Last week, in Number Sense 042, Awkward Goat and Billy Goat Gruff discovered that clock arithmetic was closed under addition, all sums were included in the original set of numbers. So far, clock addition has proved to have closure and an identity element in common with ordinary addition. Our intrepid Capra aegagrus hirci continue their search for more common properties.

“What the hell is a Capra agragus whatsit?” complained Billy Goat Gruff.

“That's us,” replied Awkward Goat. “Domestic goats. You and me.”

“Humph. Call a thing by its proper name is what I say,” said Billy Goat Gruff.

“Well, then, let's see whether clock addition is commutative and associative,” said Awkward Goat.

“Refresh my memory,” asked Billy Goat Gruff.

“Commutative means the order we add numbers doesn't matter. 1 + 2 is the same as 2 + 1.”

“The way I read our addition table,” said Billy Goat Gruff, “is the number on the left is added to the number on top. So 1 + 2 is 3, and 2 + 1 is also 3. So it seems to work, but do we have to check them all to prove it?”

“I think there might be an easier way,” replied Awkward Goat. “In our addition table, the sum of 1+2, and the sum of 2+1 are on a diagonal.”

“I see that,” said Billy Goat Gruff, “and the sums on that diagonal are all 3s. Not only that, but another diagonal is all 4s, another all 2s, and so on.”

“Good observation, Billy Goat Gruff,” said Awkward Goat, “and that means if we cut the addition table in half along a diagonal running through 0 + 0, 1 + 1, 2 + 2, 3 + 3 and 4 + 4, we get two triangles which are mirror images of each other.”

“Why would we want to cut our table in half?”

“Well, because of the way we put the table together, if we take any pair of numbers to add, the sum will be in one triangle. But if we reverse the order of those numbers, we'll get the sum in the mirror image spot in the other triangle.”

“And since the same number is in that spot, reversing the number gives us the same sum,” concluded Billy Goat Gruff.

“Alright,” he continued, “clock addition is... what did you call it?”

“Commutative”

“...commutative,” said Billy Goat Gruff. “I suppose ordinary addition is commutative as well.”

“Yes,” said Awkward Goat, “yes it is. We have yet another common property. This is fun!”

“I'm glad you think so,” said Billy Goat Gruff. “What's next?”

“The associative property,” replied Awkward Goat. “When there are more than two numbers to add, we can group the numbers in any way we want, and still get the same sum.”

“Group the numbers?”

“Well, our addition table only handles pairs of numbers,” explained Awkward Goat. “So if we have three numbers, say, we can add the first two first then add the last one to that sum, or, we can add the last two first then add the first number to that sum, and we'll get the same sum both times.”

“You're either going to have to talk slower,” said Billy Goat Gruff, “or give me an example.”

“An example, then,” said Awkward Goat. “ 1 + 2 + 3. You can add 1 + 2, get 3, then add 3 to that to get 6. So (1 + 2) + 3 = 6.”

“So far, so good.”

“You could also add 2 + 3 first, and get 5. Then you add 1 + 5 to get 6 again. 1 + (2 + 3) = 6”

“I see,” said Billy Goat Gruff. “Yes, I do see! And I think I can prove it!”

“Be my guest,” invited Awkward Goat.

“Alright then,” said Billy Goat Gruff. “We have three numbers, doesn't matter which they are... so let's just call them the red number, the yellow number and the green number.”

“Now, if we add these in order, we would add red and yellow, get a sum, then add green to that sum.”

“With you so far.”

“But our commutative property says we can switch red and yellow and get the same answer.”

“OK.”

“And the commutative property says we can switch the red and green number and still get the same sum.”

“Alright.”

“So if we add these, in order, we would add yellow and green, then add red. But according to the commutative property the sum would be the same as it was before we started moving numbers around.”

“Makes sense to me, Billy Goat Gruff,” said Awkward Goat. “We'll make a mathematician of you yet!”

“I'm not sure that's a compliment, Awkward Goat, but thanks anyway.”

#### Tags

EMAIL TO A FRIEND X
You must add at least one tag to this diary before publishing it.

Add keywords that describe this diary. Separate multiple keywords with commas.
Tagging tips - Search For Tags - Browse For Tags

?

More Tagging tips:

A tag is a way to search for this diary. If someone is searching for "Barack Obama," is this a diary they'd be trying to find?

Use a person's full name, without any title. Senator Obama may become President Obama, and Michelle Obama might run for office.

If your diary covers an election or elected official, use election tags, which are generally the state abbreviation followed by the office. CA-01 is the first district House seat. CA-Sen covers both senate races. NY-GOV covers the New York governor's race.

Tags do not compound: that is, "education reform" is a completely different tag from "education". A tag like "reform" alone is probably not meaningful.

Consider if one or more of these tags fits your diary: Civil Rights, Community, Congress, Culture, Economy, Education, Elections, Energy, Environment, Health Care, International, Labor, Law, Media, Meta, National Security, Science, Transportation, or White House. If your diary is specific to a state, consider adding the state (California, Texas, etc). Keep in mind, though, that there are many wonderful and important diaries that don't fit in any of these tags. Don't worry if yours doesn't.

You can add a private note to this diary when hotlisting it:
Are you sure you want to remove this diary from your hotlist?
Are you sure you want to remove your recommendation? You can only recommend a diary once, so you will not be able to re-recommend it afterwards.
Rescue this diary, and add a note:
Are you sure you want to remove this diary from Rescue?
Choose where to republish this diary. The diary will be added to the queue for that group. Publish it from the queue to make it appear.

You must be a member of a group to use this feature.

Add a quick update to your diary without changing the diary itself:
Are you sure you want to remove this diary?
 Unpublish Diary (The diary will be removed from the site and returned to your drafts for further editing.) Delete Diary (The diary will be removed.)
Are you sure you want to save these changes to the published diary?