“We call it the sleeping giant of the global carbon cycle, it’s not really accounted for in climate models.” Professor Örjan Gustafsson, an environmental scientist at Stockholm University in Sweden.
The EU (European Union) Research and Innovation magazine shared the work of Professor Örjan Gustafsson and his colleagues who collectively are trying to pinpoint how quickly the Arctic’s frozen ground is thawing, whether the greenhouse gases are methane or carbon dioxide, and what happens to the ancient soil as it melts. Their study focuses on the types of permafrost around the East Siberian Sea. The program is called CC-Top.
Some highlights.
In addition to the most common type found in soil on land, they will also be looking at high-carbon permafrost that formed about 50,000 years ago called Yedoma, and another type found under the seafloor of shallow coastal shelf areas that were flooded as sea levels rose about 11,650 years ago. ‘(This) subsea permafrost is the most vulnerable of the three so that’s the major focus of the project,’ Prof. Gustafsson said.
The researchers have been comparing the temperatures of permafrost on land and underwater. About 10,000 years ago, the temperature of both permafrost types was about -18˚C. They found that permafrost on the ground has now warmed up to about -10˚C but under the sea it has reached 0˚C. ‘That was surprising,’ Prof. Gustafsson said. ‘I had no idea that subsea permafrost was thawing so quickly.’
snip
They’ve also examined what happens when thawed permafrost from land reaches the sea. Some of the released carbon reacts with water to form carbonic acid - the same gas present in fizzy water. Although it’s a weak acid, Prof. Gustafsson and his colleagues found that it contributes significantly to acidification of the Arctic ocean. This affects marine biodiversity. Acidic water, for example, dissolves the carbonate skeletons of organisms such as plankton.
The team’s findings point to much higher levels of ocean acidification than that predicted by the Intergovernmental Panel on Climate Change (IPCC) in their report published in 2014, which largely considered the effect of anthropogenic carbon emissions.
‘Acidification could be 100 times more severe,’ Prof. Gustafsson said. ‘Ocean acidification by permafrost carbon from land is a new mechanism we hadn’t thought about much, and we didn’t think it was so strong.’
Next, the team plans to investigate the methane that is escaping from subsea permafrost. In many parts of the Arctic, the concentration of the gas in seawater is high but the researchers aren’t exactly sure of its source. It could be the result of thawing permafrost soil or methane hydrates – solid methane buried underwater. Or it might originate from natural gas much deeper down that is reaching the surface through cracks in permafrost as it melts.
‘We really need to understand that to predict how methane releases will develop in the coming decades or centuries,’ said Prof. Gustafsson.
The EU also reports on increasing levels of mercury as well as damage to an estimated 70% of existing Arctic infrastruture within 30 years.
Meteor Blades reminds us frequently that every Democratic candidate for office should be a climate hawk. We don’t have a second to waste.
As always, thanks for caring and reading.