Skip to main content

Weather For Kossacks


Weather For Kossacks is a new regular series posted Wednesday evenings aimed at helping readers better understand the processes that make up the weather. Topics planned include Doppler radar (this diary), formation/types of thunderstorms, severe weather, fronts, low and high pressure, hurricanes, droughts, and temperature extremes.

Be sure to follow the group or the tag "Weather For Kossacks" to read new diaries when they're posted. You can find more weather geek goodness by following me on Facebook and Twitter.

If you have any suggestions, comments, or angry hate mail, you can also email me at wxdude@outlook.com.

History of the weather radar

One of the most widely used tools in meteorology is the Doppler weather radar. We'd be lost without it. Imagine having to live through a tornado outbreak without Doppler radar telling you where the tornadoes are, right down to the neighborhoods that they're tearing up?
The development of the weather radar can be traced back to World War II, when aircraft radar operators began to notice that there were large patches of echoes showing up on their radar screens. They realized that it was the radar beam bouncing off of precipitation, and scientists began studying this phenomenon to see if it could be replicated and fine tuned for use in meteorology.

The implementation and study of weather radar technology exploded in the 1950s, and the study of severe weather grew as well. The hook heard 'round the world was measured in Illinois on April 9, 1953, when a research radar antenna detected something called a "hook echo" on radar. This was the first time a tornadic thunderstorm was ever detected on weather radar.

The last radar image captured by the WSR-57 weather radar in Miami, FL, as Hurricane Andrew made landfall. This was the first WSR-57 station installed.

This research led to the development of the first generation of weather radar used by the National Weather Service. It was called WSR-57, short for Weather Service Radar 1957. They were installed in 31 major cities across the United States, and were responsible for saving countless lives with the advanced warning they were able to provide.

The current radar system is called NEXRAD, or Next Generation Radar. These radars are advanced in that they are of a higher resolution than WSR-57, and they are Doppler radars (allowing the radar to detect velocities/wind). The technical name is WSR-88, and 161 of these radar systems were installed across the United States between 1992 and 1997. A 162nd weather radar was installed on the Washington Coast in 2011 after an intense lobbying campaign by Dr. Cliff Mass and Senator Maria Cantwell.

How Doppler radar works

If you've ever flown out of a reasonably sized airport in the United States, you've probably seen what looks like a big golfball sitting on a tall metal platform on one of the outer peripheries of the airport. That's the weather radar. The actual weather radar is a microwave antenna looks like a giant satellite dish, and it sits inside of a large dome that serves to protect the antenna from the elements.

The actual detailed workings of Doppler weather radar are intensely complicated, involving a ton of math and physics. Thankfully, the basic reasoning is pretty easy to understand.

The antenna inside the radome sends out numerous slightly angled beams 360° around the site to measure precipitation as it falls. When the beam strikes an object (rain, snow, hail, even birds and planes), it bounces back to the radar, and the computer measures how strong the beam was when it came back. The stronger the return beam, the heavier the precipitation. This is called "reflectivity." Whenever you hear reflectivity, think precipitation.

The "Doppler" part comes in because of the Doppler effect. Not only can the radar detect where it's raining and how hard the rain is falling, but it can also detect how fast the precipitation is moving. These are called "velocities." Whenever you hear radar velocities, think wind.

The radar has different levels at which it sends out the beam. These are called "tilts." The tilts range anywhere from 0.5° up to 19.5°. These may not seem like big angles, but the radar beam goes out almost 250 miles away from the radar site. Given the curvature of the Earth, the lowest radar tilt (0.5°) can wind up 53,000 feet above ground level by the time it gets a few hundred miles away from the radar site.

The number of radar tilts a particular NWS office uses is based on what their current weather is. If it's calm, they'll only have the radar slowly scan a few tilts (mainly to conserve power). If there are massive storms in the area, they'll have all the tilts turn on and have the radar sweep them as fast as it can.

Level II vs. Level III

There are two levels of NEXRAD radar data  -- Level II and Level III. Level III has more data included in it, but it has less resolution. Level II has less data in it, but it's of a higher resolution. Level II data is what's called "SuperRes." Each radar pixel in Level III data covers about half a mile. Each radar pixel in Level II data covers about a tenth of a mile. Since Level II data has almost 5x more resolution than Level III data, it's ideal for accurately viewing individual features in a storm, such as tornadic rotation.

For example, I'll use a storm near Dallas, TX the other day. This is Level III data:

And this is Level II data:

See the difference?

Radar Products

For the casual user, there are 5 major radar products: base reflectivity, base velocity, storm relative velocity, composite reflectivity, and radar estimated rainfall.

BASE REFLECTIVITY:

Base reflectivity is the most common radar product. "Base" refers to the lowest radar beam sweep, which is usually only a 0.5° tilt. This tilt gives the lowest parts of any thunderstorms in the vicinity of the radar site, and gives you the best idea of what is happening closest to the ground. Base reflectivity shows any number of objects -- rain, sleet, snow, hail, birds, airplanes, buildings, mountain tops, and during destructive tornadoes you can even see the debris rolling around in the storm.

Generally, reflectivity goes from blue to white on the scale. For the most part, blue and green indicate light rain. Yellow and orange indicate moderate rain. Red indicates heavy rain, and purple/white is either extremely heavy rain, large hail, or debris from a tornado.

Here's an example of base reflectivity data from the March 2, 2012 tornado outbreak across the Ohio Valley. At the time of this image, an EF-3 tornado was on the ground about to decimate parts of Salyersville, KY. I'll explain this image in more detail in a future Weather For Kossacks diary.

BASE VELOCITY:

Base velocity is the second most common radar product. Velocity data measures how fast precipitation is moving around within a storm -- in other words, the winds. Velocity data is crucial in detecting tornadoes and severe winds within a thunderstorm. Velocities are displayed in two colors -- usually red and green. Green generally indicates winds moving towards the radar site, and red generally indicates winds moving away from the radar site. Darker greens/reds generally show lighter winds, whereas really bright greens/reds show strong winds. When the bright green and bright red come in close contact with each other, and it's within a thunderstorm, it indicates strong rotation and the possibility of a tornado.

There's also something called "range folding" which usually shows up as purple shading in the base velocity image. The way I understand range folding is that it occurs when the radar detects a precipitation in the right direction (say, southeast), but it can't resolve how far away it is for some reason. This discrepancy causes an error in the radar's computer, and it shows up as "range folding."

The following image is a split screen between base reflectivity (left) and base velocity (right) from when Hurricane Dennis was approaching landfall in July of 2005. Intense hurricanes (like Dennis) are a great way to visualize how radar velocities work.

Hurricane Dennis approaching Florida in 2005.

STORM RELATIVE VELOCITY

Base velocity measures the speed of the winds inside of a thunderstorm. However, this product measures all winds -- accounting for just the speed of the winds. Storm relative velocity takes into account the speed and direction a storm is moving.

If a storm is moving east at 30 MPH, and it has 20 MPH winds, base velocity will show the storm having 50 MPH winds. However, if you tell the radar program that the storm is moving east at 30 MPH, the storm relative velocity will only show the winds moving 20 MPH.

It's useful if you want to remove the effects of the storm's motion from the velocity/wind speed output.

COMPOSITE REFLECTIVITY

The composite reflectivity image shows all the radar tilts combined in one image. Say, the radar scans the atmosphere at 0.5°, 0.9°, 1.2°, 2.0°, 3.5°, and 5.0°. The radar will produce 6 individual images showing each slice of the atmosphere that it scanned. The composite reflectivity image combines all 6 images into 1 image.

It's useful for detecting virga, or precipitation that falls from a storm but evaporates before it reaches the ground. Some sleazy weather geeks also use it to impress people because it makes storms look more intense than they really are.

RADAR ESTIMATED RAINFALL

In Level III radar data, there are several products related to radar estimated rainfall: One Hour Rainfall, Three Hour Rainfall, and Storm Total Rainfall. They're all estimated based on complex algorithms built into the computers at the NWS that fairly accurately estimate how much rain has fallen in a given time span based on how strong the reflectivity was over a certain area.

This image is the radar estimated storm total rainfall from the Dothan, AL area, which received upwards of 5-10+ inches of rain in the 3 days between August 5 and August 7, 2012.

3D Rendering & Cross-Sections

The great thing about having multiple radar tilts is that, when you combine them all together, you can get a comprehensive look inside of the structure of a thunderstorm. You can get a 2D or 3D look at it depending on what kind of software you use.

2D CROSS-SECTION

A cross-section is a slice through a thunderstorm on the radar, and it shows you the inside of the thunderstorm's structure in ways that you wouldn't have been able to see. It's extremely useful in pinpointing hail cores (hail suspended in the storm), updrafts, downdrafts, severe winds, and debris in tornadoes.

To show an example of a cross-section, we'll look at the devastating EF-5 tornado that destroyed much of southern Joplin, MO on May 22, 2011. This is what the base reflectivity image looks like, the white line depicting the cross-section we'll look at:

And here's the aforementioned cross-section:

The tornado was so powerful and destroyed so much stuff that it was a mile wide and 18,000 feet deep within the thunderstorm. Without even seeing reports from the ground, you know that such dense debris being thrown 3.5 miles into the atmosphere has to be doing incredible amounts of damage.

3D RENDERING

Another great thing about having many radar tilts is that specially designed software can make a 3D rendering of the data, and show you a pretty accurate model of what a thunderstorm looks like at the time of the radar scan. It combines all the radar sweeps into one image and turns it into a 3D model that shows almost every little bump and detail of the storm. It's awesome, and again, really useful for spotting tornadoes and hail cores within severe storms.

Here's an example from the April 27, 2011 tornado that tore through Tuscaloosa and Birmingham. Keep in mind that you're not seeing the tornado itself, but rather the massive amount of debris swirling around inside of it:

Here's another example from the thunderstorm near Dallas, TX that I mentioned in the "Level II vs. Level III" section. It shows the storm in beautiful detail, right down to the overshooting top and the anvil.

Dual Polarization
The next big upgrade to the NEXRAD weather radars is called dual polarization. Right now, the radar beam leaves the radar as a horizontal beam. This is okay, but having a flat beam carries limitations on what the radar is able to detect.

The solution that engineers came up with is to add a vertical beam to the radar. This upgrade gives meteorologists a whole new way of being able to see inside a thunderstorm. One of the big uses for the dual polarization upgrade is the "hydrometeor classification." The added dimension to the radar beam allows the radar's computer to detect what kind of objects the radar is detecting.

The upgrade allows the radar to detect the difference between the following objects:
-Biological (flocks of birds and/or bugs)
-Clutter
-Ice Crystals
-Wet Snow
-Dry Snow
-Rain
-Heavy Rain
-Big Drops
-Graupel
-Hail/Rain
-Unknown

This will help meteorologists tremendously in determining what's going on inside of an area of precipitation or a thunderstorm, so they can get out more accurate and timely warnings.

There are some other new products in the dual polarization upgrade, but they're way beyond my pay grade. If you'd like to learn more about dual polarization, the National Weather Service has a great outreach website devoted to education folks about this new technology.

The Next Big Thing: Phased Array

In the next decade or two, the WSR-88 "NEXRAD" radar system we have in the United States will begin to be replaced by something called phased array. The National Severe Storms Laboratory (NSSL) explains phased array much better than I could:

Current WSR-88D radars transmit one beam of energy at a time, listen for the returned energy, then mechanically tilts up a little higher, and samples another small section of the atmosphere. When it has sampled the entire volume of atmosphere, from bottom to top at a particular location, the radar goes back down, moves over a little, and starts the process over again. This continues until the radar has scanned the entire atmosphere, which takes around six or seven minutes. Phased arrays use multiple beams, sent out at one time, so the antennas never need to tilt. Scanning takes only 30 seconds, and it already has dual-polarization capabilities.
As the blockquote states, we have to wait 6 to 7 minutes for all the radar sweeps to end and the fresh images to be uploaded to the internet. With phased array, we'd have to wait just a minute or two tops. That's mind boggling. It would cut down warning times and give us about as close to a realtime view of storms as we could get.


How to view radar data

If you have money to blow and you're a hardcore weather geek, you can get one of the many, many weather programs that are available online for a fee. My favorite programs are the GRLevelX series of radar programs. GRLevel2Analyst is the best one if you want an in-depth look at the weather (with the super resolution data, cross-sections, and 3D rendering).

If you live on your cell phone (or have a Mac), RadarScope is the best way to go if you've got 10 bucks laying around. For the price of a medium pizza you can have a solid radar program that could save your life one day.

If you don't want to spend money on a radar program (hey, I don't blame you), Wunderground offers a pretty good site to view radar data.


Hope this helps. If you have any questions, please ask. Next week's Weather For Kossacks will cover heat waves, cold snaps, and why the weather changes from season to season (as simple as it may seem).

Originally posted to El Blogo de Weatherdudeo on Wed Aug 08, 2012 at 05:48 PM PDT.

Also republished by Weather For Kossacks, History for Kossacks, and SciTech.

EMAIL TO A FRIEND X
Your Email has been sent.
You must add at least one tag to this diary before publishing it.

Add keywords that describe this diary. Separate multiple keywords with commas.
Tagging tips - Search For Tags - Browse For Tags

?

More Tagging tips:

A tag is a way to search for this diary. If someone is searching for "Barack Obama," is this a diary they'd be trying to find?

Use a person's full name, without any title. Senator Obama may become President Obama, and Michelle Obama might run for office.

If your diary covers an election or elected official, use election tags, which are generally the state abbreviation followed by the office. CA-01 is the first district House seat. CA-Sen covers both senate races. NY-GOV covers the New York governor's race.

Tags do not compound: that is, "education reform" is a completely different tag from "education". A tag like "reform" alone is probably not meaningful.

Consider if one or more of these tags fits your diary: Civil Rights, Community, Congress, Culture, Economy, Education, Elections, Energy, Environment, Health Care, International, Labor, Law, Media, Meta, National Security, Science, Transportation, or White House. If your diary is specific to a state, consider adding the state (California, Texas, etc). Keep in mind, though, that there are many wonderful and important diaries that don't fit in any of these tags. Don't worry if yours doesn't.

You can add a private note to this diary when hotlisting it:
Are you sure you want to remove this diary from your hotlist?
Are you sure you want to remove your recommendation? You can only recommend a diary once, so you will not be able to re-recommend it afterwards.
Rescue this diary, and add a note:
Are you sure you want to remove this diary from Rescue?
Choose where to republish this diary. The diary will be added to the queue for that group. Publish it from the queue to make it appear.

You must be a member of a group to use this feature.

Add a quick update to your diary without changing the diary itself:
Are you sure you want to remove this diary?
(The diary will be removed from the site and returned to your drafts for further editing.)
(The diary will be removed.)
Are you sure you want to save these changes to the published diary?

Comment Preferences

Ed in Montana, dwellscho, hazey, ferg, abarefootboy, Gooserock, NYmom, alicia, akeitz, eeff, SallyCat, whenwego, retrograde, khloemi, jennifree2bme, wonmug, antirove, VexingEyes, Moody Loner, MrSandman, sockpuppet, 2laneIA, hoolia, Daniel Donner, homo neurotic, defluxion10, riverlover, Dood Abides, KayCeSF, humphrey, ExStr8, 3goldens, Tinfoil Hat, greycat, revbludge, Technowitch, Alice Venturi, labwitchy, fixxit, elbamash, Gordon20024, blue jersey mom, Floja Roja, Over the Edge, BachFan, myboo, alefnot, dougymi, fou, blueoasis, Alexandra Lynch, twigg, SadieSue, PJEvans, Unitary Moonbat, oxley, kkbDIA, Texdude50, Reel Woman, Thinking Fella, karmicjay2, zipn, donnamarie, gloriana, Mary Mike, Via Chicago, bnasley, US Blues, gchaucer2, M Sullivan, trueblueliberal, fb, jwinIL14, JayC, ScottyUrb, Youffraita, bill warnick, lineatus, here4tehbeer, My Spin, Quilldriver, palantir, cactusflinthead, jlms qkw, Louisiana 1976, Throw The Bums Out, Nailbanger, Remediator, kevinpdx, stevenwag, Lacy LaPlante, rebel ga, Larsstephens, BlueOak, Railfan, BigVegan, YellerDog, GreenDog, Susan Grigsby, SeattleTammy, michelewln, ulookarmless, Betty Pinson, DaveinBremerton, SniperCT, MidwestTreeHugger, afisher, kirbybruno, ontheleftcoast, asterkitty, doug1204, KelleyRN2, jgnyc, Empty Vessel, MA Mom, Vatexia, Hayate Yagami, SteelerGrrl, sow hat, Siri, IndieGuy, FloridaSNMOM, CA ridebalanced, Lorinda Pike, jan4insight, belinda ridgewood, BusyinCA, doroma, wxorknot, jim in IA, fritzi56, AuntieRa, janislav, mumtaznepal, broths, PHScott, entrelac, leeleedee, Aunt Pat, ORswede, Scottie Thomaston, Mike Kahlow, Pirogue, GK in IA

Subscribe or Donate to support Daily Kos.

Click here for the mobile view of the site