Skip to main content

There are few spectacles on earth more awe inspiring than a tornado over land or sea. If they seem unearthly, with all our modern science and perspective, imagine how they appeared to ancient people who might see or hear about a single such event in their lifetime! But tornadoes are a dramatic representation of one of the most common weather phenomenons on earth and throughout the cosmos as far as we can discern: the vortex. A tornado starts out way up in the clouds, concealed from sight, and that's where its engine resides. The part we see is almost an afterthought. But it's no afterthought if you're in its way. That visible part can plow the ground and tear families apart.

It's more than fascinating, it's a serious, routine concern for a lot of Americans. The majority of tornadoes occur in North America and most of those hit in a region called tornado alley. As I write this, perched in the lower outskirts of that region, the sky overhead is a puke green, the clouds tumultuous, and the the air hangs heavy with moisture as thick as a rain forest. This is twister weather.

Follow me below the fold to learn more about a typical tornado.

A typical tornado like the ones that devastated Oklahoma this week start out almost as a minor feature in a complex thunderstorm called a supercell. Clouds in general and storms specifically form because of a basic principle familiar to everyone: warm air rises and cold air sinks. The higher one gets in the atmosphere, the colder the air gets, about 3.5°F/1,000 ft (6.4°C/km) of altitude on average. When the warm air is also laden with moisture, and it cools down as it rises into the higher layers, the moisture condenses out into a fine fog which we see as a cloud. If there's enough water, the little droplets combine with one another to form larger drops which fall to earth. If if stops there we have a gentle rainstorm.

But if the surface air is really warm and really moist, and especially if the surrounding air is rather cool and dry, the warm air keeps rising like a big helium balloon, even as the water vapor condenses out, until it starts pushing up against the top layers of the lower atmosphere that act like a lid. Think of thick smoke inside a building. Like any other updraft hitting a ceiling the cloud now spreads out, it often gives the growing rain cloud a flat top, the characteristic anvil shape of a mature thunderstorm.

If the updraft is really powerful it can form a bulge in that anvil called an overshoot, something that can't usually be seen from the ground unless the supercell is almost on the horizon. The powerful updraft carries lots of water into the frigid reaches. Cold enough that the water freezes and forms sleet or snow which fall out. Sometimes the updraft is powerful enough that it sweeps falling sleet particles back up near the freezing top repeatedly, coating them with layer after layer of new ice, forming larger and larger hailstones. Big hailstones are evidence for an unusually sustained and powerful updraft. If this happens near the tropics over warm ocean water it's called a tropical depression. Some marine depressions get really big, the size of a whole state, and in the northern hemisphere go on to acquire a counter-clockwise spin due to earth's rotation (The dynamic is reversed south of the equator). Some of these can spin faster and faster, until we dub them a tropical storm or a hurricane and give them a name.


But when the average springtime supercell gets rocking and rolling over land, especially the Midwest, there is another phenomenon that can play a part while the storm develops: low altitude windshear. When two currents of wind collide at a near right angle, one below the other, it can cause a column near the bottom and usually in the rear of the storm cell to begin spinning like a barrel in water. That's the nascent vortex, a baby tornado in the making. If one end of the vortex gets pushed down by the downdrafts flowing off the main updraft, two important things happen. One, it tilts more perpendicular to the ground, and two, the entire updraft at the heart of the storm can acquire the rotation. The tilting vortex and its growing influence on the main updraft can mean real trouble. The tip of the vortex, now powered by the entire updraft, emerges from the bottom of the cloud system. If it comes into contact with the surface it begins kicking up dust and debris. Voila, the sinister shape of a mature tornado straight out of the Wizard of Oz is defined.

Vortices are ubiquitous in the solar system, they appear on all planets with an atmosphere and have been observed on the sun. They even mark the churning hearts of the some of the most exotic objects known, stellar mass and super massive black-holes at the center of quasars. No doubt they happen on planets and stars all over the universe. But the particular set of circumstances that causes a rotating vortex parallel to the surface and turns it into a terrestrial tornado touching the ground may be fairly rare.

They don't happen a heck of a lot even on earth. It just happens the geography of North America has features that are ideal in producing the vast majority. Tornado alley outlines the most common region where low altitude warm, energetic moisture laden air moving north and northwest from the gulf slams into cool fronts guided south by the Rocky Mountains and/or flowing to the east over Great Plains. Add extra energy to those two wind systems via climate change or any other source and its conceivable we could see more violent windshear, the debate is still out on whether that means more tornadoes, or more powerful ones.

Tornado Alley
A diagram of tornado alley's rough location (red), and its contributing weather systems. Click image for more at the Wiki.

Even though storm meteorologists have learned a great deal about tornado-genesis, they remain notoriously hard to predict. They've been aptly compared to trying to predict a sneeze and the effect of climate change compared to rolling loaded dice. Allergists can determine the conditions likely to cause sneezing, but no one can predict down to the minute when sneezing will happen or how powerful and numerous they will be a moment before the obligatory Gesundheit.  

However they happen, no matter rare they may be, when and if you see one you'll be impressed. They are seductive; it's human nature to want to gawk, mesmerized, at their full fleeting glory! But if you're close to one, find shelter, any shelter. Forget about the direct hits by powerful twisters that destroy buildings, those are the exception, not the rule. And even in that exceedingly rare situation, you are way, way safer inside a home bathroom, up against a load bearing wall, or laying in a ditch than you out in the open.

Remember the classic scene in the Day After Tomorrow, where the reporter gets swatted with the billboard? An EF5 tornado means winds in excess of 200 mph, theoretically with bursts as high as 300 mph. If you're within a few hundred yards of that maelstrom you might as well be on Omaha Beach on D-day. The momentum produced by wind and debris caught up in it goes up by the square of the velocity. What's really sobering is storm physicists now understand the energy dissipated goes up by the cube. If that kind of wind came from the eyewall of a hurricane, we would call it a Category Six or Seven storm.  

Originally posted to Daily Kos on Sun May 26, 2013 at 10:00 AM PDT.

Also republished by SciTech.


Your Email has been sent.
You must add at least one tag to this diary before publishing it.

Add keywords that describe this diary. Separate multiple keywords with commas.
Tagging tips - Search For Tags - Browse For Tags


More Tagging tips:

A tag is a way to search for this diary. If someone is searching for "Barack Obama," is this a diary they'd be trying to find?

Use a person's full name, without any title. Senator Obama may become President Obama, and Michelle Obama might run for office.

If your diary covers an election or elected official, use election tags, which are generally the state abbreviation followed by the office. CA-01 is the first district House seat. CA-Sen covers both senate races. NY-GOV covers the New York governor's race.

Tags do not compound: that is, "education reform" is a completely different tag from "education". A tag like "reform" alone is probably not meaningful.

Consider if one or more of these tags fits your diary: Civil Rights, Community, Congress, Culture, Economy, Education, Elections, Energy, Environment, Health Care, International, Labor, Law, Media, Meta, National Security, Science, Transportation, or White House. If your diary is specific to a state, consider adding the state (California, Texas, etc). Keep in mind, though, that there are many wonderful and important diaries that don't fit in any of these tags. Don't worry if yours doesn't.

You can add a private note to this diary when hotlisting it:
Are you sure you want to remove this diary from your hotlist?
Are you sure you want to remove your recommendation? You can only recommend a diary once, so you will not be able to re-recommend it afterwards.
Rescue this diary, and add a note:
Are you sure you want to remove this diary from Rescue?
Choose where to republish this diary. The diary will be added to the queue for that group. Publish it from the queue to make it appear.

You must be a member of a group to use this feature.

Add a quick update to your diary without changing the diary itself:
Are you sure you want to remove this diary?
(The diary will be removed from the site and returned to your drafts for further editing.)
(The diary will be removed.)
Are you sure you want to save these changes to the published diary?

Comment Preferences

Subscribe or Donate to support Daily Kos.

Click here for the mobile view of the site